
 

 

 
 

 

European Commission 

Research Programme of the Research Fund for Coal and Steel 

Technical Group: TGA5 

 
 

Smart consideration of actual ladle status  
monitored by novel sensors  

for secondary metallurgy process parameters and  
ladle maintenance strategies 

SmartLadle 
 
 

Public 

 

Birgit Palm, Bernd Kleimt 
VDEh-Betriebsforschungsinstitut GmbH (BFI) 

Düsseldorf, Germany 
 

Alexander Kovalev 
Schmiedewerke Gröditz GmbH (SWG) 

Gröditz, Germany 
 

Sailesh Kesavan, Han Yu, Erik Sandberg, Johan Björkvall 
Swerim AB (SWERIM),  

Lulea, Sweden 

 

Debbie Ågren, Mikael Svensson, Karin Steneholm 
Uddeholm AB (UAB),  

Hagfors, Sweden 

 
Asier Arteaga 

Sidenor Investigacion Y Desarrollosa SA (SID), 
Basauri, Spain 

 
 

Grant Agreement Number:101034017 
 

01.07.2021 – 31.12.2024 
 
 

Deliverable 6.1 – Evaluation of final industrial tests  
and of achieved as well as possible improvements  

in ladle treatment and maintenance 
 

Due 12 / 2024 
Lead beneficiary: SWERIM 



 

1 

Table of contents 

Page 

Project summary 2 

1. Introduction 3 

2. Test of smart and soft sensors 4 

2.1 BFI and SWG use case 4 

2.2 SID use case 9 

3. Optimisation of ML tools and verification/optimisation of soft sensor and 
Advisory Tool 11 

3.1 SWERIM and Uddeholm use case 11 

3.2 SID use case 14 

4. Evaluation of improvements regarding ladle life, temperature distribution 
within refractory, economic and environmental aspects 20 

4.1 Performance of tools 20 

4.2 Quantified improvements 21 

4.3 Transferability of the project work 23 

 
 



 

2 

 

Project summary 

What is the effect of the actual ladle status -new to worn- on steel bath properties? How do 
e.g. temperature or fluid flow vary with ladle conditions? When is the optimal moment for relin-
ing? 

SmartLadle will provide a solution for online monitoring and dynamic incorporation of actual 
ladle status for process control. A soft sensor for ladle status shall be developed, supported by 
a smart sensor for detecting refractory wear and thermal status. Measurement data, models 
and advisory tools shall provide information for decision making to operators to adapt ladle 
metallurgy process parameters to actual ladle status and decide about maintenance actions. 

 

 

Definition of terms used in the project 
 

Soft sensor: Mathematical calculation of value of a process parameter that is difficult or so far 
impossible to measure directly and online, based on other process values, measurements, 
models and smart sensor data. 
 

Smart sensor: Combination of a pure sensor for the acquisition of a measured value, e.g. re-
fractory temperature, and a small computing unit with implemented simplified models, e.g. for 
refractory wear. 
 

ML model: Data-driven model that analysis data and detects relationships (linear or non-linear) 
among variables based on real-world data using Machine Learning (ML) Techniques. 
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1. Introduction 

The deliverable D6.1 describes the work of work package 6 and provides information about  

• test of smart and soft sensors, optimisation of ML tools and verification/optimisation of 
soft sensor and Advisory Tool, and 

• evaluation of improvements regarding ladle life, temperature distribution within refrac-
tory, economic and environmental aspects. 

 
BFI and SWG focused on the test of the smart sensor as well as soft sensors for refractory 
and wear lining thickness prediction developed in previous work packages. 
 
Uddeholm AB and Swerim collaborated in building the soft sensor algorithm which was fol-
lowed by series of tests to validate and optimise the soft sensor and advisory tool. The tools 
provide additional information for decision making to decrease wear and thus increase ladle 
life.  
 
For Sidenor, this deliverable describes the final updates and connections of the models to 
conform the advisory tool and how they connect to the final trials in the tundish smart sensor 
measuring refractory temperature.  
 
Finally, all partners contributed to an evaluation of the results and transferability assessment. 
Details are described in the following chapters. 
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2. Test of smart and soft sensors 

2.1 BFI and SWG use case 

The smart sensor from WP2 as well as the soft sensors for wear and temperature prediction 

from WP4 and WP5 were applied and tested within the final WP6. For better understanding, 

at first the results of the soft sensor for temperature prediction are described, followed by the 

results of the smart sensor and soft sensor for wear prediction. 

 

The process data that was used for the software tasks included data for one selected ladle 

journey, where also partly temperature measurements by thermocouples and smart sensor 

were available. This ladle journey comprises 23 heats with VD treatment, divided into two parts 

due to a production stop in between: 

- Part 1: Preheating and 15 heats 

- Part 2: Preheating and 8 heats 

The second preheating started one month after the first preheating started, and between the 

15th heat and the 2nd preheating the ladle was not heated and thus cooled down completely.  

 

Soft sensor to calculate the refractory temperature of the SWG ladle 

 

As described in Deliverable D4.1, a Long Short-Term Memory (LSTM) neural network for per-

forming regression tasks was developed and trained as well as a XGBoost model. Due to the 

slightly better performance, the LSTM model was chosen for the work in WP6. 

 

The input data for the soft sensor included for the chosen ladle journey: 

• Preheating temperature over time 

• Liquid steel temperature (one average value from tapping to casting) 

• Air temperature in heating periods (one value) 

• Time with steel in ladle for different cases (VD treatment, VOD treatment, long VD and 

VOD treatments) 

• Time without steel in ladle for different cases (heating and short heating of empty ladle 

between casting and next tapping) 

 

In the diagrams showing the results over time, always the time since the beginning of the first 

preheating is plotted on the x-axis. 

 

The results for part 1 are presented in Figure 1, whereas the ones for part 2 are presented in 

Figure 2. Soft sensor predictions are displayed in red. To assess the performance of the soft 

sensor, also FEM calculations were performed using the FEM model that was used for training, 

but now calculating the refractory temperature distribution based on the actual boundary con-

ditions. Thus, not standard times and temperatures for the heats were used (as originally for 

training calculations), but the ones that were also used as input values for the soft sensor for 

this chosen ladle journey. FEM results are plotted in blue for the position that was selected for 

the soft sensor (at the cold face of the wear lining in steel part of the ladle, see also D4.1). 

Additionally, as far as available also temperature measurements at the position selected for 

the soft sensor calculation are plotted in green. They were made during 1st preheating using a 

datalogger and after three heats in part 2 manually. Unfortunately, due to the tight schedule in 

part 1, there were no manual measurements possible. The datalogger could not remain at the 

ladle during the heat treatments because the temperature in the protection box was expected 

to be too high. Finally, the temperature used as boundary condition (preheating temperature, 

liquid steel temperature for heats and air temperature in heating periods between heats) is 

plotted in grey. 
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Figure 1: Soft sensor in industrial trial, part 1 

 
Figure 2: Soft sensor in industrial trial, part 2 

Considering the low number of 21 training sets (described in Deliverable D4.1) – being a basic 

calculation, 2x7 variations of the production cycle for two different steel temperatures (being 

the same for all 10 heats), 3 variations where one or two heats have a different steel temper-

ature than the other heats, and 3 variations of preheating – the soft sensor shows quite accu-

rate results using actual process data as input values:  

With the FEM results at the soft sensor position for assessment of the model accuracy, the R² 

is 0.829 for part 1 and 0.503 for part 2. 
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A clear deviation can be seen in the preheating curves (being the first 24 hours in each figure), 

but this can be further improved when using more datasets for training. Although never trained, 

the cooling periods during preheating (when the ladle is e.g. moved for installation of slide 

gates and stirring plug or to other ladle preheating stations) were reproduced, but overdone.  

 

Despite this, the performance especially for prediction of temperature during the heats is good, 

which can also be seen when comparing the soft sensor predictions to the measurements 

(Table 1). 

 

Table 1: Comparison of temperature at selected times for soft sensor, thermocouple (TC) 
measurement and FEM calculation 

 Soft sensor [°C] TC measurement [°C] FEM [°C] 

End of 1st preheating 514 765 632 

After 18th heat 1160* 1085* 1234* 

After 20th heat 1114* 1107* 1125* 

After 23rd heat 868 974 1307 

* mean value between two subsequent measurements 

 

 

Smart sensor for measurement of temperature in refractory and assessment of wear at 

SWG ladle 

 

In a second step, the smart sensor temperature measurement was evaluated together with the 

soft sensor for temperature prediction. The smart sensor (Figure 3) was placed at the ladle 

bottom protected against thermal and mechanical impact, and the receiver was placed in the 

steel plant connected to a portable PC. Due to the problems with the temperature protection, 

application of the smart sensor was not possible when the ladle was in production cycles. Thus, 

it was not connected to the process control system of SWG. The assessment of wear was also 

done offline. 

 

 
Figure 3: Smart sensor before installation at the ladle bottom 

 

Results of the smart sensor temperature measurement are plotted together with the results of 

the soft sensor in Figure 4 and Figure 5. The smart sensor measurement position is not the 

same as the position where the soft sensor is predicting the temperature. The soft sensor was 

trained before the industrial trials took place, and thus a position at the cold face of the wear 

lining in steel part was chosen. Later it was decided to place the smart sensor a bit higher, 

closer to the region of the steel/slag interface, as this area is mainly affected by wear. Thus, 

the soft sensor temperature prediction (in red) is the same as in Figure 1, but in contrary the 

smart sensor measurement (in purple), the thermocouple measurement (in green) and the 

FEM results (in blue) are now for the smart sensor position. 
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Figure 4: Smart sensor in industrial trial 

 
Figure 5: Smart sensor in industrial trial – Zoom to end of preheating process  

The temperatures at end of 1st preheating were: 

Measured by smart sensor:      585 °C 

Measured by thermocouple at smart sensor position:  564 °C 

Calculated by FEM at smart sensor position:   612 °C 

Soft sensor prediction (not at smart sensor position):  514 °C 

 

It can be seen that there are deviations between the prediction of the soft sensor, that shall 

mimic the smart sensor, and the measurement of the smart sensor. Reasons for this are most 
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likely the low number of training sets for the soft sensor development (as explained above) 

and the different positions of smart and soft sensor. The first could be overcome by further 

training of the soft sensor, also with measurement data of the smart sensor. During this train-

ing, also the adapted position of the smart sensor can be considered. Due to the timeline of 

the project, this was not possible within SmartLadle project but would be an interesting work 

to perform within a subsequent project. 

 

For wear assessment the XGBoost model developed within WP5 was used, which showed a 

better performance than the random forest model.  

 

The input data for the soft sensor included for the chosen ladle journey: 

• Steel grade 

• Ladle no. 

• Ladle journey 

• No. of heat in journey 

• Time with steel in ladle 

For evaluation of the results of the soft sensor, also the remaining wear lining thickness as-

sessed by SWG were used. 

 

The results of the soft sensor’s wear prediction for the selected ladle journey are illustrated (in 

orange) in Figure 6 together with the assessed remaining wear lining thickness (in blue). The 

first point at sample index 0 shows the original wear lining thickness (of a new brick), which 

was only partly included in the training data. Following this, the remaining wear lining thickness 

(= output value) after each subsequent heat (= sample index) is plotted, and it can be seen 

how the wear lining thickness decreases over one ladle journey. 

 

 
Figure 6: Soft sensor prediction of remaining wear lining thickness in industrial trial (pre-
dicted) and assessed wall thickness (actual) 

The prediction of the wear lining thickness is fitting well the assessed values of SWG. This can 

also be seen when looking at the accuracy of the model (Figure 7) and the R² being 0,976. 
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Figure 7: Accuracy of soft sensor wear lining thickness prediction 

 

 

2.2 SID use case 

In WP2 and WP4 different trials with thermocouples in the billet tundish helped to characterize 

the thermal profile inside the refractory during preheating and working conditions. In this final 

period of the project, it was tried a step beyond: Thermocouples were placed in a tundish and 

protected in their positions, looking for a more stable measurement allowing a wireless data 

transmission. The experience gained in previous trials was important to get them well placed.  

 

Those thermocouples were placed in July 2024 and were still working in January 2025. Initially, 

standard dataloggers were used to take measurements from them and after some other addi-

tional trials they were measured using wireless dataloggers inside a protective box (Figure 8). 

Those dataloggers can collect the data and send the value to the antenna in the casting ma-

chine cabin without problems, and they are also capable of storing data from some time, in 

case the antenna is not connected. The protective box and a configuration in which the contact 

with the tundish is minimum, the datalogger can last for a long time unattended, thanks to the 

protecting box and long lasting battery; and will offer the data once it is within the range of the 

antenna. 

 

 
Figure 8: Temperatures measured in the tundish with 6 months of difference and using two 
different systems for data logging. 

R² = 0,976 
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On the other hand, the thermal images of the tundish did not work as expected as the outer 

surface of the tundish is well isolated from the refractory and the temperature there is not so 

high and gets heated with a long delay compared to the process and the working refractory.  

 

The soft sensor is centred in the application of the two liquid steel thermal models, with some 

components related to ladles thermal state and wear state. The models’ final version (within 

the project) is explained in the chapter 3.2 of this deliverable report, and it is considered suc-

cessful enough with error margins in the area of 10 ºC merging the two liquid steel models. 

This is within the accepted gap in the casting temperature.  
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3. Optimisation of ML tools and verification/optimisation of soft sensor and Advi-

sory Tool 

3.1 SWERIM and Uddeholm use case 

3.1.1 Uddeholm model test campaign 

Uddeholm AB ran campaigns after the soft sensor model was developed. The first test cam-

paign was carried out as shown in Figure 9. Ladle no. 20 was chosen for the campaign. The 

plan was to carry out ladle treatment as normal, the data were used for validation of the ML 

model. The wall thickness measurement mentioned in deliverable D4.1 was also carried out 

to processing the laser scanning data for improving the ML and CFD models. Accelerometers 

were placed in the ladle exterior for additional data during the process, the data were also used 

for ML model. The data from the ML and CFD model were used in the advisory guideline. 

 

 

Figure 9: 1st test campaign in Uddeholm after ML model development 

3.1.1.1 ML model and optimization 

SWERIM and Uddeholm tested the soft sensor model i.e., the prediction model at the end of 

the 1st campaign. The objective of the first trial was to retrain the model with the laser scanning 

data corrected for wall thickness measurement. The Figure 10 shows the prediction model 

that was developed before the campaign (in WP4) and the optimization model that was added 

to the ML model (in WP5). The model was retrained with the laser scanning data after the 

correction based on the wall thickness measurement. The prediction model provides infor-

mation on the wall thickness at different height and angle at the end of the heat cycle. The 

optimization model provides information on process parameters that can be changed to reduce 

the wall thickness as advice for the operators.  

 



 

12 

 

 

Figure 10: ML model showing prediction and optimizer model 

The Table 2 below shows the limit for parameter settings in 1 heat based on the optimization 

model where the maximum and minimum time for the key process parameters which has major 

contribution to the wall wear is proposed. The optimization parameters need to have con-

strained for different steel grades, and upstream information for individualised suggestions. 

This constrains needs to be defined for entire steel grades produced, considering the refining 

process for each grade.  

 

Table 2: Proposed limits for parameter settings for a heat 

 

3.1.2 Validation campaign  

In 2nd trials, ladle no. 23 was tracked, and the process data was recorded. The objective of the 

trial was for testing and validation of the ML model along with improving the model confidence. 

The wall thickness measurement as shown in Figure 11, was carried out at the end of the 

cycle to compare with the ML model results. The wall measurement in the slag line was around 

90mm ± 5 mm, while deep inside the ladle, the wall thickness was around 100mm. The ML 

model showed wall thickness ranging between 80-90mm at different location which is thinner 

than the measurement, but since the overprediction of model result is better than underpre-

dicting the thickness.  
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Figure 11: Wall thickness measurement during 2nd campaign 

The statistical data of electromagnetics stirring operation during the ladle cycle was plotted as 

shown in Figure 12. The operation time of EMS at Max, Mid, and Low Ampere i.e., power is 

shown over the number of each heat in the ladle cycle. The operation time of the EMS running 

at Max power averaged shows a natural decline in the EMS run time. The EMS strategy is 

determined by the steel grade, the production plan could be used where steel grade with longer 

EMS run time are cast earlier in ladle life cycle and its impact on the wall wear, but more 

analysis and trials need to be carried out for such suggestion. 

 

 

Figure 12: EMS operational time during ladle heat cycle 

3.1.2.1 Advisory tool campaign 

The advisory tool includes the ML prediction, optimisation code, and the CFD result look up 

table. Two strategies for the advisory tool were discussed. The first option was to reduce the 

EMS operation time without changing the EMS power, and the second option was to reduce 

the EMS power without changing the run time. The campaign was planned for 26 heats, the 

process parameters data was compiled at the end of the week by Uddeholm and send to 

Swerim. The wall thickness status and the strategy for EMS stirring was to be proposed. During 
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the campaign preparation, the impact of EMS operational time on refining was questioned. 

Further internal discussion led to running the campaign where the wall thickness prediction 

was provided for Uddeholm at the end of each week, but the advisory tool guidelines were not 

tested.  

 

 

Figure 13: Interface for wall thickness and wear 

3.1.3 Deviations 

The CFD models were rerun with new CAD geometry after the laser scanning data corrections. 

The result from CFD models shows the homogenisation time for the first and last heat ladle 

shape, but the refining of the different elements is not included in the modelling. The refining 

of elements requires a mix of EMS, Gas stirring, and Vacuum treatment as seen in Table 3.  

 

Table 3: Elements and refining strategy 

Element stirring strategy 

Sulfur (S) EMS + Gas Stirring 

Hydrogen (H) Gas Stirring + Vacuum 

Oxygen (O) EMS + Gas Stirring 

Phosphorus (P) Gas Stirring 

Nitrogen (N) Gas Stirring + Vacuum 

Inclusions (Al2O3, MgO, TiN) EMS + Gas Stirring 

 

The homogenization time for steel chemistry and temperature could be modelled for a variety 

of ladle statuses using the soft sensor for brick thickness and the CFD model for ladle stirring. 

The proposed new stirring strategy by the advisory tool, with regards to homogenization time, 

will in many cases result in reduced stirring time and reduced stirring power.  

Operation with such low stirring time and low power is not well represented in historical process 

data and therefore calibration of a soft sensor for steel quality will not be reliable. Additionally, 

the influence of reduced EMS operational time and power on the slag-metal interaction and 

refining of steel was not extensively studied. With these uncertainties, we didn’t implement the 

new stirring strategy for the ladle life cycle at UAB. Future works were recommended to test 

the new stirring strategy on individual heats (with respect to effects on steel quality) before 

rolling out the strategy for entire ladle cycle. 

 

 

3.2 SID use case 

In Deliverable 3.3 was shown a set of models connected to offer a complete description of the 

ladle/refractory/stirring/liquid steel system (Figure 14). It was an aspirational overview to in-

spire not only the work in this project but also future improvements and developments. 
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Figure 14: Schema of model connections from WP3. 

 

From those sets, in WP4 and WP5 a narrower selection was done to focus mainly on the 

models used in the advisory tool (WP5), that were updated with more recent data. This is the 

final work done in them in WP6, model by model: 

 

Liquid Steel Temperature model (ladle):  

This data-based model is, together with the tundish version of it, the cornerstone of the project 

work. The initial version from WP3 was updated with new data from 2023 and 2024, using the 

same input variables conceptually, so the main update was to collect and calculate them again. 

Those data are summarized in: 

- Temperature measurements (the model calculated the difference between them as 

main output) and they mark the time periods for the rest of variables. 

- Additions between temperatures. 

- Vacuum treatment between temperatures. 

- Ladle thermal state (thermal state model) 

- Stirring power. 

- Ladle ID and car ID, in case there are differences between them. 

In this version of the model more than 30000 rows of data were collected, and a complete 

version and a simplified version of input data were elaborated to be able to use it in advisory 

tool conditions.  

 

From the algorithms tried in WP3 only two have been used in the WP6 version: 

- Random Forest offered a good precision with a RMSE of 6.7 ºC in validation data and 

a R2 of 0.92 (Figure 15) 

- Linear Model was worse (RMSE of 10.0 ºC and a R2 of 0.79), but it is considered 

useful for some aspects of implementation as explained in WP5 

 

 



 

16 

 

 
Figure 15: Predicted vs measured Temperature differences in the liquid steel temperature 
model in ladle calculated with Random Forest. 

The simplified version of the Random Forest worsens the RMSE to 7.4 ºC. Both the Random 
Forest and the Linear model are used in the secondary metallurgy pages as the main calcu-
lating models. 

 

Liquid Steel Temperature model (tundish):  

This model was only outlined in WP3 and later elaborated in WP4, WP5 and WP6 using the 
knowledge from temperature measurements and soft sensor results in the tundish and the 
analytical model in WP5 for the tundish refractory. 

The output variable is the liquid steel temperature change rate in the tundish. This approach is 
based on the linear behaviour of the temperature data and the small changes in the tempera-
ture at the same time. The process time is not so different from heat to heat but available 
temperatures can be different and this way the data are equalized. Most important input vari-
ables are the sequence number, previous tundish temperature, temperature from ladle liquid 
steel.  

It is important to note that the thermal state of the tundish is strongly correlated to the number 
of heats in the sequence. The explanation surged from the thermocouple data and can be 
interpreted as follows: all tundishes have similar preheating curves, so start the first heat in the 
sequence in a similar thermal state, and, in the data collected in Sidenor they follow a thermal 
curve that is quite linear in the internal data from the second heat; they do not reach to thermal 
soaking (Figure 8).  
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The linear model is not too accurate, but a Random Forest offers enough precision with a R2 
= 0.63 and a RMSE 0.09ºC/min.  

 

Figure 16: Predicted vs measured Temperature change rate (in K/min) in the liquid steel 
temperature model in tundish calculated with Random Forest. 

This model is the main element in the tundish part of the user interface via web page. It is 
included in the general simulation, and it is somehow used in the LF1 and LF2 pages.  

 

Refractory Thermal Model: 

The model is based in a 1D FEM approach using the refractory layers in the ladle and their 
thermal properties. The ladle history is a key factor for the thermal model as it feeds the story 
of each ladle with the input data about preheating, time with liquid steel, stops,… It runs every 
hour for the working ladles and stores the thermal state data in a database. It takes into account 
the wear state of the ladle. Those data were summarized in a value about thermal state which 
was used in the liquid steel thermal model in the ladle.  

The model was developed before the project, but it was updated and the way of connecting it 
to the other models was rethought.  

One option initially considered was to set it up as a data model, using the analytical model to 
train the data model. This option could offer a better performance in terms of precision/time of 
calculation and could ease to use it in a more sophisticated way. But this approach was not 
fulfilled in the project, and it is considered an option for the future. 

Finally, the precision of this model is difficult to measure, interesting but requires specific work 
that was not done. Nevertheless, and indirect measurement is the importance in the liquid steel 
temperature model in ladle:  the thermal state variable was among the top 5 most influential in 
the model.  
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Refractory Wear Model: 

The refractory wear model was initially thought as a supervised data model for each of the 
refractory zones defined in the refractory zones distribution model. And this approach is con-
sidered still valid and useful, if enough data can be obtained. The traditional way of obtaining 
postmortem wear data in the ladle (used for the refractory zones distribution model) has two 
inconveniences: the effect that many variables are averaged over the ladle life, and the number 
of data per month is low. In consequence, it is necessary to have stable conditions to accumu-
late enough data for the model to be able to make reasonable predictions. However, during 
the years of the project, the stability of refractory conditions has been considered insufficient: 
there have been changes in the production rate due to several crisis, changes in refractory 
materials to adapt to those changing conditions, and changes in the production mix.  

The consequence is that a simpler approach has been followed, absorbing the values of the 
industrial trials in WP4 and some others: A general wear rate is calculated by zone and penal-
izations are included for the worse case scenarios/factors. The wear rate is calculated to the 
three zones determined in the refractory zones distribution model and this was used for the 
ladle building optimization tool. But for the calculations of the refractory thermal model only 
one zone, the steel part, is considered, as it is the most influential in the thermal model and 
this offers a useful simplification. 

On the other hand, a measurement system as the laser contour measurement tried by other 
partners in this project has the potential to make a difference by multiplying the data collection, 
if heat by heat data are obtained reliably. 

 

Refractory Zones Distribution Model 

The model used in the WP3 analysis was checked and the results remain valid. The output 
was to define 3 wear zones in the ladle based on the post-mortem remaining thickness of the 
bricks row by row. They were grouped by a clustering algorithm and the three clusters solution 
was the most successful one.  

 

Stirring Intensity Model 

Stirring intensity has been the focus of many projects and measuring techniques. The ap-
proach in this project was to get a reasonable way to assess its effect over thermal evolution; 
it would be also a factor in the refractory wear rate but this aspect has not been considered.  

For that purpose, the flow rate and counterpressure data measured in the ladles were used. 
Previous to the project an index of effective stirring power was developed based on the ratio 
between those variables, but those data had an important amount of “noise”. Effectively, in 
more than 50 million rows of data per year (one per second in each ladle car) there are many 
non-valuable data. Some of them are obvious, but other as transitory states in flow rate 
changes are more difficult to filter. 

In those data, a better filtering (including elimination of flow rate transition) has been devel-
oped, and the result is considered successful: in one month period data (2 million rows) the 
correlation between flow rate and counter pressure has improved from 0.86 to 0.93.  

A vibration sensor has also been checked, and it is considered useful and meaningful, in fact 
it is correlated with flow rate with a correlation factor of 0.72 (unfiltered) or 0.82 (filtered). This 
also confirms that the filtering is working. However, vibration values are in general shakier, 
they are valuable when the stirring rate is low and open eye is not present, so for the purpose 
of this project the value obtained from counterpressure after filtering was used for the data 
model as input. 

 

Ladle Thermal Images Analysis Model 

Ladle thermal images were taken at the beginning of the project in the ladle cleaning station, 
and in that position, it was very helpful to be able to identify the ladle by the number in the ladle 
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shell, because different ladles could be together in that position. And this was the intention of 
this model, but the camera taking those images was removed and alternative cameras posi-
tioned in the ladle introduction position in the secondary metallurgy. For this reason, the iden-
tification by the image is no longer needed and the model for it is not useful in this moment. 

 

The concept presented in Task 3.3 in Figure 14 was the basis of the rest of the work; it helped 
to get a broad perspective and focus the efforts on the rest of the project. Many of the models 
have not reached a complete maturity as it has been explained, but they have been useful in 
the advisory tool. And, thus, there are still open threads that can help in the future fine tuning. 
Many of the activities of the rest of the partners have been inspirational too for future advances. 
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4. Evaluation of improvements regarding ladle life, temperature distribution 

within refractory, economic and environmental aspects 

 

4.1 Performance of tools 

 

The smart sensor at SWG performed well over the whole trial durations considering the low 

temperatures at the smart sensor position during “cold” preparation of the ladle, providing 

measurement data reliably and constantly. Only the sensor internal temperature was not al-

ways available, but this problem can be solved by new thermocouple or plug. Power supply 

was stable for more than two days in a row. Here, testing the use of TEGs, as suggested in 

the study, will make one step forward to less maintenance effort during permanent application. 

 

Smart sensor performance at SID was satisfactory as a tool to understand the thermal perfor-

mance of the tundish. After initial data acquisition with standard dataloggers, enough experi-

ence was gained to use a wireless logger and transmitter that worked robustly for more than a 

month without requiring installation and deinstallation. 

 

The FEM models were further advanced to calculate temperature distribution and mechanical 

stresses in the ladle refractory and worked well. They were used to not only calculate different 

possible scenarios for ladle optimisation, but also training sets for soft sensor development. 

 

The CFD model provided information for flow behaviour, and homogenization in the ladle at 

different ladle wear geometry, and EMS power. 

 

The BFI soft sensor model performances were very good, providing suitable results for the 

very low number of training sets in the case of the temperature prediction. This can be further 

improved by continuing training with further data sets. The soft sensor for wear lining thickness 

assessment provided well suiting results compared to the assessment of SWG. A next step, 

which is very time consuming and thus would require a new project, could be to evaluate real 

wear data by measurement of remaining brick thickness or by measurement of Laser Contour-

ing System (LCS) as done at UAB and use this as input data for the soft sensor developed by 

BFI. 

 

The SWERIM soft sensor performed well, providing the wall thickness and wear rate after each 

heat of the ladle process. The sensor overpredicts the wall wear which is better than under-

predicting as there is a safety buffer. The optimisation model provides the maximum and min-

imum time for each of the highly influential process parameters.  

 

The results obtained by the SID models were quite successful in terms of prediction accuracy 

and an advisory tool has been developed with a practical objective: To offer advice in the 

different installations regarding heating and to offer information about the ladles to decide with 

model data about ladle life ending or repair decisions. Those products are expected to be 

positive not only in a direct sense, but also in more indirect one of helping to adapt to changing 

production circumstances and challenges.  

 

The Laser Countouring System (LCS) is a system commercially available, performed well con-

sidering the environment in a melt shop and was user-friendly for the operators. The LCS 

improved confidence in running extra number of heats thereby increasing the ladle life cycle 

by 28 % (in terms of number of heats). Although the LCS at UAB initially thought to be per-

forming remarkably, after evaluation of the raw data from the LCS, the slag glazing anomaly 

mentioned earlier resulted in questioning the performance and output of the system. 
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Finally, the connection of the different aspects/problems/models is important in the Smart La-

dle concept, especially for SID. Every part of the whole does not have to be perfect, but it 

needs a minimum performance. 

 

 

4.2 Quantified improvements 

 

To quantify improvements possible by implementing the tools of the SmartLadle project, the 

two main drivers of industrial benefit regarding the steelmaking production were investigated: 

The temperatures at casting and the ladle life. Additionally, the improvement by application of 

LIBS at SWG and non-quantified advances are discussed below. 

 

Liquid Steel Temperature: 

The temperature at casting has some degree of freedom from metallurgical point of view: The 

target temperature is based on the liquidus temperature of that steel grade plus some over-

heating fixed for the steel grade too. Although there is a margin, to achieve a lower temperature 

increases the risk of clogging and highly the risk of breakout, and a higher temperature will 

have the problem of more energy waste in LF; this is the aspect we can use to estimate the 

benefit: 

 

The formula to calculate the amount of electrical energy saving (and associated costs and CO2 

emissions) during one year of production would be: 

 

𝑲𝑾𝒉𝒚𝒆𝒂𝒓[𝑲𝑾𝒉] = 𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆[º𝑪] ∗ 𝑲𝑾𝒉𝟏𝑪 ∗ 𝑯𝒆𝒂𝒕𝒔𝒀𝒆𝒂𝒓  (Equation 1) 

𝐶𝑜𝑠𝑡𝑠𝑦𝑒𝑎𝑟[€] = 𝐾𝑊ℎ𝑦𝑒𝑎𝑟[𝐾𝑊ℎ] ∗ 𝐶𝑜𝑠𝑡𝐾𝑊ℎ [€]   (Equation 2) 

 

𝐶𝑂2𝑦𝑒𝑎𝑟[𝑇𝑜𝑛𝑠 𝐶𝑂2𝑒𝑞] = 𝐾𝑊ℎ𝑦𝑒𝑎𝑟[𝐾𝑊ℎ] ∗ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝐾𝑊ℎ [𝑇𝑜𝑛𝑠 𝐶𝑂2𝑒𝑞/𝐾𝑊ℎ]   (Equation 

3) 

 

The variables short explanation: 

- KWhyear = The estimated saving in electrical energy per year 

- Temperature = The average difference in casting temperature gap (average gap be-

tween target and measured value) between the two semesters in 2024 

- KWh1C = Electrical energy needed to heat 1ºC the liquid steel in the ladle (obtained by 

the linear model in liquid steel in ladle. 

- Heatsyear = Number of heats in a standard one year production. 

- CostsKWh = Cost of electrical energy, standard Spanish 2024.1 

- Costsyear = Cost savings over a year associated with the reduction of Temperature. 

- EmissionFactorKWh = Official emission factor from the Spanish regulator.2 

- CO2year = The amount of CO2eq kg saved in one year from the electricity saving. 

 

The details of the numbers are in the RP2 report, but the final values for SID calculated with 

the aforementioned formulas are: 

- Temperature = 1.8 ºC 

- Costsyear = 55329 €  

- CO2year = 216.000 kg CO2eq 

 

Additionally, due to lower heating input improvements can be expected in refractory consump-

tion (apart from the refractory analysis) and some small productivity potential. 

 
1 Official Wholesale Electricity market in Spain (OMIE). https://www.omie.es/es/market-

results/interannual/continuous-intradaily-market/intradaily-prices?scope=interan-

nual&system=1 
2 From the REE web page for 2024. https://www.ree.es/es 
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At SWG, the Advisory Tool was not installed, thus a direct quantification of improvements was 

not possible. Nevertheless, an estimation was done, based on the procedure of SID. For the 

calculation, a possible improvement was assumed for a 1 K temperature reduction of the dif-

ference in casting temperature gap (average gap between target and measured value). 

 

Again, the details of the numbers are in the RP2 report, but the final values for SWG calculated 

with the aforementioned formulas are: 

- Temperature = 1 ºC 

- Costsyear = 11333 €  

- CO2year = 18.000 kg CO2eq 

 

Ladle Life: 

The second main parameter that may get benefit from the project work is the ladle life. This 

aspect has been less protagonist in the Sidenor work but the wear estimation approach, some 

industrial trials, and the Tool for helping in ladle building decisions (Task 5.1) are focused 

in helping to improve ladle life and understanding the causes behind.  

 

The tool for helping in ladle building decisions itself has been used for the estimation of bene-

fits. The calculation uses following formulas: 

 

𝑵𝒖𝒎𝒃𝒆𝒓𝑳𝒂𝒅𝒍𝒆𝒔𝟎 =
𝑯𝒆𝒂𝒕𝒔𝒀𝒆𝒂𝒓

𝑯𝒆𝒂𝒕𝒔𝑷𝒆𝒓𝑳𝒂𝒅𝒍𝒆𝟎
  (Equation 4) 

𝑵𝒖𝒎𝒃𝒆𝒓𝑳𝒂𝒅𝒍𝒆𝒔𝟏 =
𝑯𝒆𝒂𝒕𝒔𝒀𝒆𝒂𝒓

𝑯𝒆𝒂𝒕𝒔𝑷𝒆𝒓𝑳𝒂𝒅𝒍𝒆𝟎+𝑰𝒎𝒑𝒓𝒐𝒗𝒆𝒎𝒆𝒏𝒕𝑯𝒆𝒂𝒕𝒔𝑷𝒆𝒓𝑳𝒂𝒅𝒍𝒆
  (Equation 5) 

𝐶𝑜𝑠𝑡𝑠𝑦𝑒𝑎𝑟[€] = (𝑁𝑢𝑚𝑏𝑒𝑟𝐿𝑎𝑑𝑙𝑒𝑠0 −  𝑁𝑢𝑚𝑏𝑒𝑟𝐿𝑎𝑑𝑙𝑒𝑠1) ∗ 𝐶𝑜𝑠𝑡𝐿𝑎𝑑𝑙𝑒 [€]   (Equation 6) 

 

𝐶𝑂2𝑦𝑒𝑎𝑟
[𝐾𝑔𝑟𝑠 𝐶𝑂2𝑒𝑞] = (𝑁𝑢𝑚𝑏𝑒𝑟𝐿𝑎𝑑𝑙𝑒𝑠0 −  𝑁𝑢𝑚𝑏𝑒𝑟𝐿𝑎𝑑𝑙𝑒𝑠1) ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑎𝑑𝑙𝑒[𝐾𝑔𝑟𝑠] ∗

 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑅𝑒𝑓 [𝐾𝑔𝑟𝑠 𝐶𝑂2𝑒𝑞/𝐾𝑔𝑟𝑠]   (Equation 7) 

 

The variables short explanation: 

- NumberLadles0 = The estimated total number of ladles per year in base conditions 

- NumberLadles1 = The estimated total number of ladles per year in improved condi-

tions 

- HeatsPerLadle0 = Ladle Life in base conditions. 

- ImprovementHeatsPerLadle: Improvement in ladle life (number of heats per ladle life) 

- Heatsyear = Number of heats in a standard one year production. 

- WeightLadle = Total weight of ladle working refractory, including partial repair. 

- CostsLadle = Cost of working refractory for one ladle. 

- Costsyear = Cost savings over a year associated with the increase of ladle life. 

- EmissionFactorRef = Emissions of MgO-C refractory per weight. 

- CO2year = The amount of CO2eq kg saved in one year from the improvement of ladle 

use. 

 

The details of the numbers are in the RP2 report, but the final values for SID calculated with 

the aforementioned formulas are:  

 

- ImprovementHeatsPerLadle = 2 

- Costsyear = 137473 €  

- CO2year = 423.500 kg CO2eq 

 

Again, for an estimation of improvements for SWG performed based on the one for SID, Equa-

tions 4 to 7 were used. For the calculation, a possible improvement was assumed for a 1 heat 

per ladle life increase. 
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Once more, the details of the numbers are in the RP2 report, but the final values for SWG 

calculated with the aforementioned formulas are:  

 

- ImprovementHeatsPerLadle = 1 

- Costsyear = 45470 €  

- CO2year = 230.057 kg CO2eq 

Effects of LIBS equipment at SWG: 

During the project, fast analysis of pre-material such as ferro alloys based on LIBS was in-

stalled at SWG. The main advantage is that all lots supplied can be checked due to the fast 

measurement, and thus the use of poor-quality alloying materials (and resulting failures) is 

avoided. This reduces quality losses and related costs.  

Additionally, approximately 0.83 hours of working time are saved per measurement because 

a measurement with the LIBS device is significantly faster than a RFA measurement. The 

personnel cost savings are approx. 10083 € per year. 

 

Stirring strategy and quality of steel at UAB: 

The proposed new stirring strategy by the advisory tool, with regards to homogenization time, 

will in many cases result in reduced stirring time and reduced stirring power. Operation with 

such low stirring time and low power is not well represented in historical process data and 

therefore calibration of a soft sensor for steel quality will not be reliable. With this uncertainty, 

the new stirring strategy for the ladle life cycle was not implemented at UAB. Future works 

were proposed to implement the stirring strategy to test in individual heats before rolling out 

the strategy for entire ladle cycle. 

 

Conclusions about the results 

The main numbers calculated in the previous paragraphs are considering the improvements 

that hold for one year; so, although being positive they are not high for a steelmaking factory 

standard.  

 

However, there are many other outcomes not so easy to quantify but valuable as well. Some 

of them are: 

 

- The closer observation of the actual ladle status in terms of wear results in a reduced 

probability of break-throughs; the benefit is hard to quantify, but invaluable for im-

proved operator safety. Also, the plant equipment is less at risk, which means down-

time and repair costs can be avoided. 

- The set of tools offers more adaptability; in a very variable production context, having 

tools to prepare for changes helps to change faster and in a more convenient way. 

- The connection among them helps understand the implication of changes and possi-

ble decisions. 

- If the models deviate, for example in temperature or ladle wear, it is in fact an alarm 

system showing changes in significant aspects of the process. 

- The classification of open aspects helps to prioritize future developments. 

- The quantitative understanding of many of the effects opens options of CO2 emission 

calculations and simulations related to them. 

 

 

4.3 Transferability of the project work 

It can be divided in two parts: the techniques and the models/advisory systems. The develop-

ments within the projects are widely transferable for the European steel industry because la-

dles are present in all the factories, tundishes in most of them, and temperature control is 

useful in all too. With a well thought-out design, both thermocouple instrumentation and the 

use of a smart sensor can be realised also for ladles used in BOF plants, although a higher 
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number of thermocouples could be considered to scale-up the system to larger ladles. Espe-

cially the thermocouple instrumentation has already been done before by one partner at a BOF 

plant with no significant differences. For the models it makes no difference if a ladle is used in 

an electric steelmaking plant (as in the project), or in a BOF plant. They have to be 

adapted/trained anyway (see also below), always considering the relevant input data. 

 

Regarding the techniques: 

• Thermocouple data acquisition in ladle: Ladles in different steel plants have different 

layouts, thus the positions of the thermocouples need to be adapted accordingly. De-

spite a higher installation effort, it is recommended to place several thermocouples in 

different positions to gain a complete first view in terms of thermal behaviour. After-

wards a selection of a few positions (see also smart sensor application below) is suffi-

cient to monitor the ladle thermal status. The thermocouples need to be installed with 

care to avoid air holes that falsify results. The main challenge is the sufficient protection 

of the datalogger against the high temperature during steel production, and especially 

VOD treatments, and mechanical impact. It is strongly recommended to place the pro-

tection box at the ladle wall if a steel plant uses tanks for degassing and to measure 

the temperature inside the protection box with a dummy before use of the logger. 

• Thermocouple data acquisition in tundish: it is less challenging than in ladles, but it is 

important to find the way to get the thermocouples out of tundish shell and to protect 

them. For long term data acquisition, it is critical to find a position for the logger and 

thermocouple head well protected mechanically in the tundish demolition process and 

thermally in the preheating and working conditions. 

• Smart sensor application in a ladle: it requires less installation effort due to a limited 

number of measurement positions (in BFI/SWG case 2 in the ladle refractory). Never-

theless, the thermal protection of the smart sensor must be even better than for a (high 

temperature resistant) datalogger due to the electronics used. 

• Ladle measuring with laser system: The laser scanning system used at UAB improved 

confidence in running higher number of heats. The system is easy to implement and 

measure, also in other plants and for ladles of different sizes. A key factor to consider 

is the slag glazing left on the wall and its impact on the wall thickness measurement, 

which could lead to false confidence during operation. The slag composition and its 

affinity to glazing needs to be examined. Additionally, ways to reduce slag glazing need 

to be examined before implementation.  

• Fast slag and ferroalloy analysis: a transfer of the LIBS measurement system to other 

steel plants is possible, but before use an extensive calibration with the slags or fer-

roalloys of that steel plant is needed. The calibration of the fast slag analysis system 

for SWG slags was challenging and, in the end, not precisely enough for multi-compo-

nent slag systems to be used as an online tool to obtain a new process parameter for 

adaption of slag conditioning. Nevertheless, the fast LIBS-based analysis has been 

used to analyse feedstock material such as ferro alloys in the steel plant and this anal-

ysis has been established at SWG. 

 

Regarding the models: 

The exact data and models depend on the concrete installations but most of the approaches 

of this project can be transferred to other plants. The procedure to transfer them can be sum-

marized as: 

 

Data Gathering: This is in fact the most critical part for most models. The models cannot be 

better than the data with which they are fed or done, and if the data do not contain the relevant 

information it will have to be estimated with indirect data or estimations. The following data are 

needed for a period considered sufficient to obtain enough data for the models (will depend on 

production rate): 
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• Liquid Steel temperature model 

• Ladle furnace heating values and times. 

• Alloys additions and times. 

• Slag formers additions and times. 

• Stirring connected values per time. 

• Vacuum pressure and time. 

• Estimation of ladle thermal state (from thermal model) 

 

• Ladle thermal model/Refractory temperature model: 

• Data related to time with liquid steel 

• Time in (pre-)heating by burners 

• Ladle refractory configuration 

• (Trials with thermocouples in refractory recommended) 

• (Ladle wear estimation is advised) 

 

• Ladle wear model/Remaining ladle wear lining thickness model: 

• Ladle history in terms of heats and ladle journeys 

• Final wear data in form of residual length of the bricks 

• Time in (pre-)heating by burners 

• Ladle refractory configuration 

• (Ladle contour laser measurement can be of great use) 

 

• Tundish liquid steel temperature model: 

• Liquid steel temperatures in tundish 

• Time in tundish 

• Temperature of the steel coming from ladle 

• Previous heat temperature 

• Sequence numbers. 

• (Refractory temperature measurements recommended) 

 

Modelling: It will depend on the concrete case and amount of data, the explanations in section 

3.2 can help. Data models are a great tool but not the only one, in each case it is convenient 

to think about the type of problem, type of data and desired output. In some of the cases even 

if linear models were not the best they offer interesting insights about variable effects and their 

quantification.  

In this project Random Forest models worked well for the two liquid steel temperature cases 

at Sidenor, and the thermal model is FEM based (simplified). Wear model can also be done 

with machine learning approach, but enough data are required. 

At BFI, for refractory temperature prediction a LSTM model is preferred, and for wear prediction 

a XGBoost model. 

The machine learning (ML) model developed by Swerim and UAB consists of both prediction 

and optimization models. While the prediction model can be directly implemented in the plant 

for monitoring wear trends, the optimization model requires defining process parameter limits, 

which vary for each steel grade. Therefore, a comprehensive evaluation of refining parameters 

and their relationship to process conditions is necessary before deploying the optimization 

strategy full scale. When applying in other steel plants, the ML model should be adapted by 

first analysing ladle wear patterns specific to each facility’s operational conditions using LCS, 

and historic process data. Initial implementation should prioritize the prediction model to es-

tablish baseline wear trends, followed by the gradual integration of the optimization model once 

the refining parameters for different steel grades are well understood.  

Additionally, the models should be retrained accordingly, and validation trials conducted to 

ensure accuracy and reliability. 
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Supporting modelling: The CFD models developed in this project provide insights into the ho-

mogenization rate in both new and worn-out ladles at UAB. Additionally, the models simulated 

two different EMS power regimes currently used by UAB. For application in other steel plants, 

these CFD models can be used straight away by running the simulations by replacing the 

geometry with plant-specific ladle LCS data. By integrating plant-specific operational data, 

such as EMS power settings, stirring patterns, and refining chemistry, the models can provide 

customized insights into homogenization efficiency and process optimization for that ladle. 

The FEM models further developed in this project provide information about the thermal and 

thermo-mechanical conditions of SWG ladle and were used to calculate different scenarios as 

well as training sets for ML models. They can be used to also calculate temperature and 

thermo-mechanical stresses for ladles of other steel plants. As all FEM models, they need to 

be adapted to the different ladle geometry, different material properties and different boundary 

conditions. 

 

User Interface: This aspect has become easier during the last years. For example, within the 

project the Streamlit library has been used by Sidenor; it helps to use ML models and connect 

them to production data with a straightforward approach. It is important to think about possible 

users and number of simultaneous users, which are not so many in steel making factories. 

The user interface of the Swerim ML model is designed to be intuitive and user-friendly, allow-

ing process engineers and operators to efficiently analyse ladle wear. The interface enables 

users to import process parameter data from the UAB in-house system in Excel format, which 

then provides key outputs such as maximum and average wall wear, as well as wall thickness 

measurements. Additionally, when the optimization model is activated, the interface offers re-

commendations on the maximum and minimum operational times for each key process pa-

rameter, assisting in process refinement and efficiency improvements. For usage in other steel 

plants, the interface and ML model can be adapted to integrate plant-specific data manage-

ment systems, ensuring compatibility with various data formats. 

 

 

 


