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Project summary 

What is the effect of the actual ladle status -new to worn- on steel bath properties? How do 
e.g. temperature or fluid flow vary with ladle conditions? When is the optimal moment for relin-
ing? 

SmartLadle will provide a solution for online monitoring and dynamic incorporation of actual 
ladle status for process control. A soft sensor for ladle status shall be developed, supported by 
a smart sensor for detecting refractory wear and thermal status. Measurement data, models 
and advisory tools shall provide information for decision making to operators to adapt ladle 
metallurgy process parameters to actual ladle status and decide about maintenance actions. 

 

 

Definition of terms used in the project 
 

Soft sensor: Mathematical calculation of value of a process parameter that is difficult or so far 
impossible to measure directly and online, based on other process values, measurements, 
models and smart sensor data. 
 

Smart sensor: Combination of a pure sensor for the acquisition of a measured value, e.g. re-
fractory temperature, and a small computing unit with implemented simplified models, e.g. for 
refractory wear. 
 

ML model: Data-driven model that analysis data and detects relationships (linear or non-linear) 
among variables based on real-world data using Machine Learning (ML) Techniques. 
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1. Introduction 

The deliverable D3.3 describes the work of task 3.3 that aims the preparation of the ML mod-
elling approach for the rest of the project in Sidenor use case. The work is an initial version 
and will be further improved and completed throughout the project. It is based on previous 
works ([P2-4]) but intends to go one step beyond by the use of more available data and im-
proved modelling approaches. The data to be used are described in D1.1 and include different 
sources and data granulometry, thus, data treatment is an important and time-consuming job 
before modelling itself. In fact, some of the models are providing elaborated data to others, 
doing a data preparation and transformation work. 
 
Figure 1 shows the models developed and the connections among them. The two main mod-
els are the refractory wear model and the liquid steel temperature model; each of them with 
their own data sources. There are four other models that exert a role of helper models for the 
main models. The refractory wear model is at the same time a helper model for the liquid steel 
temperature model and the refractory thermal model too. The main idea of the helper models 
is that they provide “elaborated” data for the next models.    
 
Data sources are displayed as well in the figure, they provide the basis for the model develop-
ment although in some cases the raw data need different treatment for the different models. 
The tundish data are distinguished in the figure as they are going to be obtained in the sensing 
tasks and, at this stage, are quite unripe. 
 

Next chapters describe each of those models with more detail. 
 

 

Figure 1: Schema of model connections 

One general aspect is that the ML techniques or approaches will be used in many of them. In 

the supervised models that means that the data will be divided in training and testing sets; an 

error metric will be decided in function of the data; several models will be tried and based on 

the testing error the best one chosen; influence of the input variables will be estimated to check 

the variables themselves and the model too. This approach is not completely new for some of 
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those models, but regarding the development of the techniques and the systematization of 

them, a good advance is expected. 

 

2. Refractory Zones Distribution Model 

Concept: The refractory wear rate is different from zone to zone of the ladle. From previous 

projects experience and practical knowledge this is a clear fact. The main distinction made in 

P3, for example, is slag line and steel part (Figure 2). Nevertheless, the intention in this project 

is to go beyond this approach and obtain numerically the zones from the wear data. This is a 

good opportunity to better understand wear data and at the same time provide a better output 

number for wear models. 

 
Figure 2: Simple Refractory Zones distribution 

 

Data: Data collected from demolished ladles in cold conditions allow the measurement of re-

sidual length of the bricks. Joining these residual lengths with the initial length of the bricks 

and the number of heats the ladle has been working, it can be obtained the average wear rate 

per brick. It is important to note that only a representative brick per row has been measured 

and the only measurement is post-mortem in this case. So it refers to the remaining size after 

(residual length) after ladle reparation or demolition. This data requires a heavy pretreatment 

as they come from manual measurements and annotations, particularities in the cycles,…This 

aspect has been one of the most time consuming from the initial work, but, at the same time, 

it is the basis for the use of the richness they include. The calculation itself of the wear rate 

requires consideration as if the data come from partial demolition or final demolition or if they 

are in final demolition which bricks were changed in partial demolition. This data richness is an 

improvement from previous works as they were based on averaged values or just significant 

ones. 

 

Model Approach: The main idea of the model is to use a clustering algorithm to differentiate 

the zones by the measured wear rate, it is an unsupervised approach. The first version tried 

was using a K-Means algorithm for each of the ladle sides (they are different due to the wear 

produced by the stirring gas) and the result for both of them was that 3 clusters classify well 

the wear rate data (Figure 3). 3 zones for each of the two sides of the ladle. The wear rates 

are well distinguished by those groups giving three distinct populations. Nevertheless, this is 

an initial analysis that will be further improved and enriched with new data. 
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Figure 3: Elbow curve to check number of clusters for one of the ladle sides, the results for 
the other side are very similar regarding number of clusters for each ladle side 

 

3. Ladle Thermal Images Analysis Model 

Concept: Thermal images have been acquired since some years for the steelmaking ladles. 

For example, in P2 several were used to assess thermal state of the ladles and check a thermal 

model. For this project the same approach is expected but adding some innovations. The main 

concept to try is to use modern neural network image analysis to check ladle numbers and 

automatize ladle detection in the image. The output has to be treated to be able to check the 

output of refractory thermal model. 

 

 
Figure 4: Examples of recent ladle thermographs 
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Data: Some thousands of new thermal images has been collected during 2022 to use current 

conditions and ladle status (Figure 4). Those images are the starting point for the analysis. 

The first activity was to adapt the camera acquisition procedure to increment the number of 

images acquired. After acquisition, a first data cleaning (elimination of low quality images, or 

images difficult to treat) has been the next step to leave less images, but better, to treat and 

classify. In the first stage of the analysis many images have been manually classified (ladle 

number) to have a number of annotated data. In some cases the annotation is not possible as 

ladle number is not visible in the image. In others it is clearly seen, as it is displayed in the 

images top right and bottom left in Figure 4. 

 

Model Approach: The main concept is to use pretrained CNN models and retrain them with 

annotated images in order to obtain a reliable model that can detect the ladle in the image and 

“read” the ladle number.  

 

4. Refractory Thermal Model 

Concept: The refractory thermal model was elaborated and updated in projects like P2 and 

P3. It was a Finite Different model in 1D. A much better modelling and checking has been done 

in other projects, using more elaborated models and precise thermocouple measurements, but 

real-life conditions require simplification: for one part, calculation time has to be fast to cope 

with the long lives of the ladles; in the other hand, the uncertainties in the industrial conditions 

are much greater and a rough calculation with better data can be more reliable than a great 

calculation with wrong data. In any case, this is a helper model in this project, designed to 

provide data to the wear model and liquid steel temperature model. In the case of liquid steel 

temperature model the implication is clear; the total amount of heat accumulated in the refrac-

tory is a key factor for the temperature loses of the liquid. Regarding the wear model, strong 

thermal stress estimations are sought as a cause of refractory wear. However, this is a bilateral 

relationship, as remaining size of the refractory is one of the important inputs for the thermal 

state of the ladle. 

 

Data: Ladle History data are the key ones to assess the thermal state. The times for each heat 

in which the ladle has been with liquid steel, in burners, empty or covered determine how much 

heat has entered in the refractory and how much has been lost. Refractory configuration is 

also a key factor, as different configurations leave to different heat capabilities. Data coming 

from wear calculation are also needed. 

 

Model Approach: The former running model is the basis for the calculation. But two develop-

ments are ongoing: one is to get an appropriate output for the liquid steel temperature model 

and wear model, the other one is to check the option of substituting the finite element model 

with a data based model. This possibility can be interesting if a low error is obtained and the 

data based model is faster to run. For this purpose, a series of models runs will be done to 

create a training data set, some others for a testing data set and the errors of the data models 

will be calculated over them. 

 

5. Stirring Intensity Model 

Concept: The stirring rate is at the same time an important aspect of the secondary metallurgy 

and a value difficult to measure. In several projects (P4, P7, P9 for example) it has been ad-

dressed and different techniques have been developed to measure or estimate it better. The 

basic idea would be that a well measured flow rate of the stirring gas would be good enough 

to measure the stirring power but, this is not reliable in industrial conditions. Among the devel-

opments to measure it better are open-eye images, vibration measurements, electric arc sta-

bility and the classical flow rate vs counter pressure checking. This project is not devoted at 

Sidenor to deepen in the stirring measurement but to use some of the gained knowledge to 
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provide more reliable stirring data to the other models. Concretely, it is reasonable to expect 

that different stirring conditions will affect both: the thermal behaviour of liquid steel and the 

wear of the refractory. With the data and knowledge acquired in previous projects a stirring 

“value” is being elaborated to feed the rest of the models. 

 
Figure 5: Smooth Scatter plot of the flow rate vs pressure in data including first 3 months 
from 2022. 

 

Data: The data to be used come mainly from cyclic secondary metallurgy data collected in the 

two ladle cars. They have to be prepared and filtered and also enriched with refractory data 

(porous plug type). The raw data consist of flow rate, counter pressure, vacuum pressure, 

vibration power, and valve state. In Figure 5 a good example of those data is displayed for the 

initial months of year 2022.  

 

Model Approach: In previous projects a “corrected flow rate” gas elaborated, using mainly 

porous plus measured flow rate vs pressure data. The measured cyclic data were interpreted 

using a linear formula. In this development a similar but more elaborated and updated ap-

proach is being followed: This time the production cyclic data are the main input. They need to 

be correctly filtered and interpreted to feed a linear model. The greater amount of data and the 

incorporation of vibration data and more precise ML error measurements are being used to 

check an updated and more reliable “corrected flow rate”. This amount has to be easy to cal-

culate as the value to be used in the other models has to be simple enough and possible to 

calculate between concrete timestamps or in a complete heat, and in different conditions (vac-

uum, LF). 

 

6. Refractory Wear Model 

Concept: As worked in previous project (P3), refractory wear rate is valuable by itself to opti-

mize ladle performances, but at the same time it is a value needed for ladle thermal calculation, 

and, this way, liquid steel temperature model. The main idea behind this kind of model is that 

the wear of the refractory is not uniform in all the heats and significant differences can be found 

depending on several factors. 
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Data: This model follows a supervised model approach. One variable has to be explained 

(wear rate) depending on many others. And this is, at the same time, the difficulty and the 

opportunity of this model version. The difficulty is that counting only aggregated data at the 

end of ladle life, the effect of the many explaining variables can be disguised, the opportunity 

is to try to improve the feature engineering with respect previous experiences and the help of 

the helper models. Concretely, the Y variable will be calculated using the aggregation of data 

from the ladle zones model; in each zone an average or median wear rate will be tried. In the 

other hand, refractory thermal model and stirring data model will provide additional data to 

enrich and improve the wear rate data explanations divided by zones. Apart from those models’ 

inputs more standard inputs will be used as steel compositions, time with liquid steel in ladle, 

vacuum time, time in burners, slag formers,... 

 

Model Approach: The refractory wear rate is different from zone to zone of the ladle as defined 

in the refractories zones definition model. In consequence, two approaches are possible: one 

model for each zone or a general model in which categorical variables distinguish the zones. 

In a linear model, the multiple model approach is almost needed to cope with possible strong 

influence differences from factors, for example, slag formers can be critical in slag line but less 

important in steel parts. However, more complex models can cope better with those differ-

ences. Both approaches will be tried.  

 

The model is still not in the first stage as a minimum of one year of data are desired for this 

model as the ladle campaigns are not so many and the first months of the project have still 

been difficult for production regularity due to several external factors (Covid, energy costs, 

supply chain difficulties). These aspects affect all the models but this one especially due to the 

lower amount of data, as they are aggregated. 

 

7. Tundish Conditions 

 
Liquid steel temperature evolution during secondary metallurgy is closely connected with the 

ladle. But once casting conditions are considered another vessel has to be considered: The 

tundish (Figure 6 shows a schematics). In P2 it was treated in a very simple way, so to improve 

it, this is a key aspect of Sidenor approach to SmartLadle, but it will be developed in the activ-

ities related to sensors in WP2 and WP4. From those measurements, there will be deduced if 

specific modelling is needed to understand and preview the thermal evolution of the steel tem-

perature in the tundish and how to cope with it in the Soft Sensor and advisory tool.  

 

 
Figure 6: Tundish Schematics 

 

In any case, the last step from the ladle to the tundish always includes the ladle effect too, as 

the liquid steel stays some minutes there. In consequence, both aspects have to be considered 

to make a good prediction of the casting temperature. 
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8. Liquid Steel Temperature Model 

 
Concept: During the secondary metallurgy process, liquid steel temperature is maintained 

within a reasonable range considering the metallurgical processes. Nonetheless, there are 

many factors affecting it as melting of ferroalloys and slag formers, heating to compensate 

loses, thermal loses to the refractory or vacuum degassing. In P2 data acquisition was per-

formed and a linear model obtained to be able to calculate the thermal behaviour, optimize it, 

and, finally, be precise in the most important temperature loss: The one from secondary met-

allurgy to casting, as casting temperature is a critical parameter for production and quality. This 

approach is not a novelty, but in this project the tundish part will be much better characterized 

and modelled as mentioned in Chapter 7 and the secondary metallurgy part will be improved 

with richer data and modelling capabilities. 

 

Data: The data have been collected from liquid steel temperature measurement to the next 

one. In each of those time periods the influential events have been collected (vacuum, addi-

tions, arc heating,...) but also significant variables calculated as thermal state or stirring power. 

But it is important to note that this is not for the whole heat, it is for each of the periods between 

measurements. The last period is from the last secondary metallurgy measurement and the 

continuous casting. Those data are not obtained only from process data, they require the 

helper model outputs.  

 

Model Approach: The initial data collection has been completed as many data are got for this 

model; some data per heat allows values in the thousands easily. The “holes” due to lack of 

helper models (wear rate model) have been completed with reasonable data (for example uni-

form wear per heat). This is not considered a big problem in this initial setup, as this is a first 

step that will be improved with the measurements in the tundish and other developments 

throughout the project. 

 

The error type used is Root Mean Squared Error (RMSE) as it is usual in continuous output 

variables. Several models have been compared: Linear Model, Random Forest, XGBoost, 

LightGBM, K Nearest Neighbours, Support Vector Machines and a Neural Network. The initial 

best model has been XGBoost and the training error (RMSE) close to 8 ºC in training set and 

15ºC in testing set. Those values suppose a R2 superior to 80%.  

 

 
Figure 7:  Prediction vs measurement in the modelled population  
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Figure 8: Importance of the input variables in the LightGBM model. 

Figure 7 and Figure 8 show two results from two of the models regarding the predicted vs 

measured values and the ranking of variable importance. None of those results is especially 

critical as the main objective of this stage is to establish the founding of the models and data 

pipelines; nonetheless, the first results show promising perspectives. 

 

9. First conclusions 

This deliverable explains the modelling setup developed in Task 3.3. As it can be seen in 
Figure 1, the data collected in WP1 and described in D1.1 feed many different models, con-
nected among them. Although many models share the ML approaches and techniques, they 
are quite different in objectives, complexity and expectations. In fact, the complete task, and 
the project work by extension, is an actualization of the developments in previous projects and 
the more systematic implementation of ML concepts updated with last years’ improvements in 
the area. 
 

The structure of the models, inputs, outputs and approach have been defined but the degree 
of maturity of model implementation is different in each case, depending on the data collec-
tion and dependency with other tasks. 
 
However, there are some initial results available that show the potential of the models and 
the interest of the approach. 

10. Future Work 

As explained in the model descriptions and conclusions many of the models are still unfinished 
and some lack data or time to collect the data. In fact, this deliverable is a roadmap for the rest 
of the projects than a report of results. 
 
It will also be discussed by the project partners, if and how some of the approaches can also 
be used for other use cases besides the one of Sidenor. 
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Modelling of temperature and stress in refractory material, liquid steel temperature and fluid 
flow in steelmaking ladle, and sensors at ladle 
 

[P2] Improving steelmaking processes by enhancing thermal state ladle manage-
ment, LADTHERM RFSR-CT-2014-00006 (2014-2017) 

[P3] Enhanced steel ladle life by improving the resistance of lining to thermal, ther-
momechanical and thermochemical alteration, LADLIFE RFSR-CT-2009-00003 
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[P4] Stirring plug monitoring system for improvement of plug availability and stirring 
performance, PLUGWATCH RFSR-CT-2012-00005 (2012-2015) 
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DYNSTIR RFSR-CT-2015-00004 (2015-2018) 

[P8] Improved control of inclusion chemistry and steel cleanness in the ladle fur-
nace ECSC-STEEL C7210-PR/331 (2002-2005) 

[P9] Development of advanced methods for the control of ladle stirring process 
ECSC-STEELC 7210-PR/330 (2002-2005) 

[P10] Production of EAF steels with low content of N2 and S through vacuum treat-
ment ECSC-STEEL C7210-PR/135 (1999-2002) 

[P11] Control of inclusion, slag foaming and temperature in vacuum degassing 
ECSC-STEELC 7210-PR/079 (1998-2001) 
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[P12] Development of a new automation and information paradigm for integrated intel-
ligent manufacturing in steel industry based on holonic agent technology, 
I2MSTEEL RFSR-CT-2012-00038 (2012-2015) 

[P13] Consistent ladle tracking for optimisation of steel plant logistics and product 
quality, TrackOpt RFCS no.753592 (2017) (2018-2021) 

[P14] Virtual design of cyber-physical production optimization systems for long pro-
duction factories, CYBER-POS RFCS no.709669 (2016) (2016-2019) 
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Power supply 
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